Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Antimicrob Chemother ; 75(9): 2582-2586, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516368

RESUMO

BACKGROUND: The voriconazole and echinocandin combination has been found to be synergistic in vitro and in vivo against most Aspergillus fumigatus isolates, both with a WT azole phenotype and an azole-resistant phenotype. The interaction between isavuconazole and echinocandins is less well studied. This is especially true for azole-resistant isolates. OBJECTIVES: We investigated the in vitro interaction between isavuconazole and anidulafungin for 30 A. fumigatus isolates including 18 azole-resistant isolates with various isavuconazole resistance phenotypes. METHODS: The isavuconazole/anidulafungin interaction was studied by using an adapted EUCAST-based 2D (12 × 8) chequerboard broth microdilution colorimetric assay using XTT. The interaction was analysed by FIC index (FICi) analysis and Bliss independence (BI) interaction analysis. RESULTS: Both the FICi analysis and the BI analysis showed synergistic interaction between isavuconazole and anidulafungin for the majority of WT and azole-resistant isolates. As we did not see significant beneficial effects of combination therapy in TR46/Y121F/T289A isolates at clinically achievable drug concentrations, it is unlikely that TR46/Y121F/T289A infections would benefit from isavuconazole and anidulafungin combination therapy. CONCLUSIONS: In regions with high azole resistance rates this combination may benefit patients with WT disease, azole-resistant invasive aspergillosis and those with mixed azole-susceptible and azole-resistant infection, but may not be beneficial for aspergillosis due to isolates with high isavuconazole resistance, such as TR46/Y121F/T289A isolates.


Assuntos
Aspergillus fumigatus , Azóis , Anidulafungina , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergillus fumigatus/genética , Azóis/farmacologia , Farmacorresistência Fúngica , Proteínas Fúngicas , Humanos , Testes de Sensibilidade Microbiana , Nitrilas , Piridinas , Triazóis
2.
Artigo em Inglês | MEDLINE | ID: mdl-28923874

RESUMO

Antifungal susceptibility testing is an essential tool for guiding therapy, although EUCAST and CLSI reference methods are often available only in specialized centers. We studied the performance of an agar-based screening method for the detection of azole resistance in Aspergillus fumigatus cultures. The VIPcheck consists of four wells containing voriconazole, itraconazole, posaconazole, or a growth control. Ninety-six A. fumigatus isolates were used. Thirty-three isolates harbored a known resistance mechanism: TR34/L98H (11 isolates), TR46/Y121F/T289A (6 isolates), TR53 (2 isolates), and 14 isolates with other cyp51A gene point mutations. Eighteen resistant isolates had no cyp51A-mediated azole resistance. Forty-five isolates had a wild-type (WT) azole phenotype. Four technicians and two inexperienced interns, blinded to the genotype/phenotype, read the plates visually after 24 h and 48 h and documented minimal growth, uninhibited growth, and no growth. The performance was compared to the EUCAST method. After 24 h of incubation, the mean sensitivity and specificity were 0.54 and 1.00, respectively, with uninhibited growth as the threshold. After 48 h of incubation, the performance mean sensitivity and specificity were 0.98 and 0.93, respectively, with minimal growth. The performance was not affected by observer experience in mycology. The interclass correlation coefficient was 0.87 after 24 h and 0.85 after 48 h. VIPcheck enabled the selection of azole-resistant A. fumigatus colonies, with a mean sensitivity and specificity of 0.98 and 0.93, respectively. Uninhibited growth on any azole-containing well after 24 h and minimal growth after 48 h were indicative of resistance. These results indicate that the VIPcheck is an easy-to-use tool for azole resistance screening and the selection of colonies that require MIC testing.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Itraconazol/farmacologia , Triazóis/farmacologia , Voriconazol/farmacologia , Aspergillus fumigatus/isolamento & purificação , Genótipo , Humanos , Testes de Sensibilidade Microbiana
3.
J Antimicrob Chemother ; 72(9): 2548-2552, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28605488

RESUMO

Background: F901318 is a new antifungal agent with a novel mechanism of action with activity against Aspergillus species. We investigated the in vitro activity of F901318 against a collection of Aspergillus isolates. Methods: A total of 213 Aspergillus isolates were used in this study. A total of 143 Aspergillus fumigatus sensu stricto isolates were used, of which 133 were azole resistant [25 TR34/L98H; 25 TR46/Y121F/T289A; 33 A. fumigatus with cyp51A-associated point mutations (25 G54, 1 G432 and 7 M220); and 50 azole-resistant A. fumigatus without known resistance mechanisms]. Ten azole-susceptible A. fumigatus isolates were used as WT controls. The in vitro activity was also determined against Aspergillus calidoustus (25 isolates), Aspergillus flavus (10), Aspergillus nidulans (10) and Aspergillus tubingensis (25). F901318 activity was compared with that of itraconazole, voriconazole, posaconazole, isavuconazole, amphotericin B and anidulafungin. Minimum effective concentrations and MICs were determined using the EUCAST broth microdilution method. Results: F901318 was active against all tested isolates: A. fumigatus WT, MIC90 0.125 mg/L (range 0.031-0.125); TR34/L98H,TR46/Y121F/T289A and azole resistant without known resistance mechanisms, MIC90 0.125 mg/L (range 0.031-0.25); A. fumigatus with cyp51A-associated point mutations, MIC90 0.062 mg/L (range 0.015-0.125); and other species, A. calidoustus MIC90 0.5 mg/L (range 0.125-0.5), A. flavus MIC90 0.062 mg/L (range 0.015-0.62), A. nidulans MIC90 0.125 mg/L (range 0.062-0.25) and A. tubingensis MIC90 0.062 mg/L (range 0.015-0.25). Conclusions: F901318 showed potent and consistent in vitro activity against difficult-to-treat Aspergillus spp. with intrinsic and acquired antifungal resistance due to known and unknown resistance mechanisms, suggesting no significant implications of azole resistance mechanisms for the mode of action of F901318.


Assuntos
Acetamidas/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus/efeitos dos fármacos , Aspergilose Pulmonar Invasiva/microbiologia , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Aspergillus/genética , Aspergillus fumigatus/genética , Aspergillus fumigatus/isolamento & purificação , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Genótipo , Humanos , Aspergilose Pulmonar Invasiva/tratamento farmacológico , Itraconazol/farmacologia , Testes de Sensibilidade Microbiana , Nitrilas/farmacologia , Mutação Puntual , Piridinas/farmacologia , Triazóis/farmacologia , Voriconazol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...